# Generalization of Nambu-Goldstone theorem to nonrelativistic systems

#### Yoshimasa Hidaka

(Nishina Center, RIKEN)

## Several physical phenomena



# Several physical phenomena Spontaneous symmetry breaking



# Several physical phenomena Spontaneous symmetry breaking



# Several physical phenomena Spontaneous symmetry breaking



### QCD phase diagram



## QCD phase diagram



chiral symmetry breaking, translation breaking, rotation breaking.....
What is the low-energy excitation?

## QCD phase diagram



chiral symmetry breaking, translation breaking, rotation breaking.....
What is the low-energy excitation?

#### NG modes in QCD

— Pion -

SSB of chiral symmetry

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$
  
 $N_{\rm BS} = 3, \quad N_{\rm NG} = 3$ 

Dispersion:  $\omega = k$ 

#### NG modes in QCD

#### — Pion -

SSB of chiral symmetry

$$SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$$
  
 $N_{\mathrm{BS}} = 3, \quad N_{\mathrm{NG}} = 3$ 

Dispersion:  $\omega = k$ 

#### NG modes in Kaon condensed CFL phase -

Miransky, Shovkovy ('02) Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01)

$$SU(2)_I \times U(1)_Y \to U(1)_{\rm em}$$
  
 $N_{\rm BS} = 3, \quad N_{\rm NG} = 2$ 

Dispersion: 
$$\omega = k^2$$

# Plan of my talk What are low-energy excitations

# Plan of my talk What are low-energy excitations

for internal symmetries breaking?

# Plan of my talk What are low-energy excitations

for internal symmetries breaking?

for spacetime symmetries breaking?

#### Symmetry and conservation law

Noether's theorem Noether 1915

Symmetry Conserved charges

Time translation

Spatial translation

Rotation

U(1) phase

Energy

Momentum

Angular momentum

Charge

#### Symmetry and conservation law

Noether's theorem Noether 1915

#### Symmetry Conserved charges

Time translation

Spatial translation

Rotation

U(1) phase

Energy

Momentum

Angular momentum

Charge



$$\partial_t n_a(t, \boldsymbol{x}) + \partial_i j_a^i(t, \boldsymbol{x}) = 0$$

Charge 
$$Q_a = \int d^3x n_a(t, \boldsymbol{x})$$
  $\frac{d}{dt}Q_a = 0$ 

# Pattern of symmetry breaking Explicit

Parity breaking, CP breaking ...

#### Spontaneous

Magnet

Superconductor

crystal

liquid crystal,









#### Anomaly

Chiral, Weyl, gauge, parity anomalies,....

## Continuum symmetry

#### Internal



Spin of electron



#### Spacetime

Space-time translations, rotation, boost

#### Gauge

Electroweak and strong U(1)xSU(2)xSU(3)

Spontaneous breaking: there exists at least one local operator, Φ<sub>i</sub>, such that

$$\langle [Q_a, \phi_i(\boldsymbol{x})] \rangle \equiv \operatorname{tr}\rho [Q_a, \phi_i(\boldsymbol{x})] \neq 0$$

Vacuum:  $\rho = |\Omega\rangle\langle\Omega|$ 

In medium: 
$$\rho = \frac{\exp(-\beta(H - \mu N))}{\operatorname{tr} \exp(-\beta(H - \mu N))}$$

#### Why important?

Without detail of systems, one can predict many things: dispersion relations, low-energy theorem,...

Bloch  $T^{3/2}$  law,



Holtzberg, McGuire, M'ethfessel, Suits, J. Appl. Phys. 35,1033 (1964)

Debye T<sup>3</sup> law, ...



Chiral condensate

$$\frac{\langle \bar{q}q \rangle_T}{\langle \bar{q}q \rangle_0} = 1 - \frac{1}{8} \frac{T^2}{f_\pi^2} + \cdots$$

For fields  $F[\phi]$ 







#### Elasticity

For crystal



Free energy 
$$F = \frac{1}{2}(\partial_i \pi^a)^2 + \cdots$$

# Gapless excitations = Nambu-Goldstone (NG) mode

Nambu('60), Goldstone(61), Nambu, Jona-Lasinio('61),

#### Spin wave (magnon)



Crystal vibration (phonon)



#### Nambu-Goldstone theorem

Goldstone, Salam, Weinberg ('62)

# For Lorentz invariant vacuum Spontaneous breaking of global symmetry



# of broken symmetry = # of NG modes

Dispersion relation  $\omega = c |\mathbf{k}|$ 

#### Example in relativistic systems

#### Approximate symmetry of QCD

$$SU(2)_L \times SU(2)_R \to SU(2)_V$$

#### Three broken generators

Three NG modes: Pions  $\pi^+, \pi^-, \pi^0$ 

#### **Dispersion relation**

$$\omega = \sqrt{k^2 + m_\pi^2}$$



#### Example of NG modes

#### Superfluid phonon

broken of number

Broken generator: Q

One phonon  $|\omega \sim |m{k}|$ 



#### Magnon

Broken of rotation

Two broken generators  $S_x, S_y$  one magnon  $\ \omega \sim {m k}^2$ 



# and dispersion are different from relativistic ones

# Generalization Nielsen - Chadha ('76)

$$N_{\text{type-I}} + 2N_{\text{type-II}} \ge N_{\text{BS}}$$

Type-I:  $\omega \propto k^{2n+1}$  Type-II:  $\omega \propto k^{2n}$ 

# Generalization Nielsen - Chadha ('76)

$$N_{\text{type-I}} + 2N_{\text{type-II}} \ge N_{\text{BS}}$$

Type-I:  $\omega \propto k^{2n+1}$  Type-II:  $\omega \propto k^{2n}$ 

Schafer, Son, Stephanov, Toublan, and Verbaarschot

$$\langle [Q_a, Q_b] \rangle = 0$$
  $N_{\rm NG} = N_{\rm BS}$ 

# Generalization Nielsen - Chadha ('76)

$$N_{\text{type-I}} + 2N_{\text{type-II}} \ge N_{\text{BS}}$$

Type-I:  $\omega \propto k^{2n+1}$  Type-II:  $\omega \propto k^{2n}$ 

Schafer, Son, Stephanov, Toublan, and Verbaarschot ('01)

$$\langle [Q_a, Q_b] \rangle = 0$$
  $N_{\rm NG} = N_{\rm BS}$ 

#### Watanabe - Brauner ('11)

$$N_{\rm BS} - N_{\rm NG} \le \frac{1}{2} {\rm rank} \langle [Q_a, Q_b] \rangle$$

# Recent progress

Effective Lagrangian method Watanabe, Murayama ('12)

Mori's projection operator method YH ('12)

• 
$$N_{\text{type-I}} + 2N_{\text{type-II}} = N_{\text{BS}}$$

• 
$$N_{\text{type-II}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$$

# Recent progress

Effective Lagrangian method Watanabe, Murayama ('12)

Mori's projection operator method YH ('12)

$$\bullet N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}}$$

$$N_{\text{type-B}} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$$

# Two type of excitations





Type-A
Harmonic oscillation

Type-B Precession

## Two type of excitations





Type-A

Harmonic oscillation

 $\omega \sim \sqrt{g}$ 

Type-B

**Precession** 

$$\omega \sim g$$

# Intuitive example for type-II NG modes

Pendulum with a spinning top

- Rotation symmetry is explicitly broken by a weak gravity
- Rotation along with z axis is unbroken.
- Rotation along with x or y is broken.
- The number of broken symmetry is two.



# Intuitive example for type-II NG modes

Pendulum has two oscillation motions



if the top is not spinning.

# Intuitive example for type-II NG modes

If the top is spinning,



the only one rotation motion (Precession) exists.

In this case,  $\{L_x, L_y\}_P = L_z \neq 0$ 

## Recent Progress

Watanabe, Murayama ('12), YH ('12)

NG modes associated with spontaneous breaking of internal symmetry can be classified by two types:



$$N_{\text{type-A}} = N_{\text{BS}} - 2N_{\text{type-B}}$$
  $N_{\text{type-B}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$ 



$$N_{\text{type-B}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$$

$$N_{\rm BS} - N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$$

# What is the NG mode? charge densities are slow:

$$\partial_t n_a(t, \boldsymbol{x}) = -\partial_i j_a^i(t, \boldsymbol{x})$$

# What is the NG mode? charge densities are slow:

$$\partial_t n_a(t, \boldsymbol{x}) = -\partial_i j_a^i(t, \boldsymbol{x})$$

ex) in medium  $j_a^i = \Gamma \partial_i n_a$ 

Diffusion equation  $\partial_t n_a(t, \boldsymbol{x}) = -\Gamma \partial_i^2 n_a(t, \boldsymbol{x})$ 

## What is the NG mode?

charge densities are slow:

$$\partial_t n_a(t, \boldsymbol{x}) = -\partial_i j_a^i(t, \boldsymbol{x})$$

ex) in medium  $j_a^i = \Gamma \partial_i n_a$ 

Diffusion equation  $\partial_t n_a(t, \boldsymbol{x}) = -\Gamma \partial_i^2 n_a(t, \boldsymbol{x})$ 

When SSB occurs, the charge density and the local operator are canonically conjugate cf. <u>Nambu</u> ('04)

$$\langle [iQ_a, \pi_b(\boldsymbol{x})] \rangle \neq 0$$



$$\partial_t \pi_a = c n_a$$

$$\partial_t \pi_a = c n_a$$

$$\partial_t n_a = b \partial_i^2 \pi_a$$

#### Type-A NG modes

Pair: charge density and local operator

$$\langle [iQ_a, \pi_b(\boldsymbol{x})] \rangle \neq 0$$

#### Type-A NG modes

Pair: charge density and local operator

$$\langle [iQ_a,\pi_b(m{x})]
angle 
eq 0$$
  $\partial_t \pi_a = c n_a \quad \partial_t n_a = d\partial_i^2 \pi_a$   $\omega = \sqrt{cd} |m{k}|$  Type-A = Type-I

#### Type-A NG modes

Pair: charge density and local operator

$$\langle [iQ_a, \pi_b(\boldsymbol{x})] \rangle \neq 0$$

$$\partial_t \pi_a = c n_a \quad \partial_t n_a = d\partial_i^2 \pi_a$$



#### Type-B NG modes

Pair: charge densities

$$\langle [iQ_a,n_b(\boldsymbol{x})]\rangle \neq 0$$
 
$$\partial_t n_a = c'\partial_i^2 n_b \quad \partial_t n_b = -d'\partial_i^2 n_a$$
 
$$\omega = \sqrt{c'd'}\boldsymbol{k}^2 \qquad \text{Type-B = Type-II}$$

#### Type-A NG modes

Pair: charge density and local operator

$$\langle [iQ_a, \pi_b(\boldsymbol{x})] \rangle \neq 0$$

$$\partial_t \pi_a = c n_a \quad \partial_t n_a = d \partial_i^2 \pi_a$$



### Type-B NG modes

Pair: charge densities

$$\langle [iQ_a,n_b(\boldsymbol{x})]\rangle \neq 0$$
 
$$\partial_t n_a = c'\partial_i^2 n_b \quad \partial_t n_b = -d'\partial_i^2 n_a$$
 
$$\omega = \sqrt{c'd'}\boldsymbol{k}^2 + \Gamma |\boldsymbol{k}|^4 \quad \text{Type-B = Type-II}$$

## Effective Lagrangian approach

Leutwyler ('94) Watanabe, Murayama ('12)

#### Write down all possible term

$$\mathcal{L} = \frac{1}{2}\rho_{ab}\pi^a\dot{\pi}^b + \frac{\bar{g}_{ab}}{2}\dot{\pi}^a\dot{\pi}^b - \frac{g_{ab}}{2}\partial_i\pi^a\partial_i\pi^b$$
 +higher orders

## Effective Lagrangian approach

Leutwyler ('94) Watanabe, Murayama ('12)

Write down all possible term

$$\mathcal{L} = \frac{1}{2} \rho_{ab} \pi^a \dot{\pi}^b + \frac{\bar{g}_{ab}}{2} \dot{\pi}^a \dot{\pi}^b - \frac{g_{ab}}{2} \partial_i \pi^a \partial_i \pi^b$$

+higher orders

No Lorentz symmetry:

The first derivative term may appear.

## Effective Lagrangian approach

Leutwyler ('94) Watanabe, Murayama ('12)

#### Write down all possible term

$$\mathcal{L} = \frac{1}{2}\rho_{ab}\pi^a\dot{\pi}^b + \frac{\bar{g}_{ab}}{2}\dot{\pi}^a\dot{\pi}^b - \frac{g_{ab}}{2}\partial_i\pi^a\partial_i\pi^b$$

+higher orders

No Lorentz symmetry:

The first derivative term may appear.

Lagrangian is invariant under symmetry transformation up to surface term.

up to surface term. 
$$\rho_{ab} \propto -i \langle [Q_a, j_b^0(x)] \rangle$$

Watanabe, Murayama ('12)

## **Examples of Type-B NG modes**

|                                                                                                                 | $N_{ m BS}$ | $N_{ m type	ext{-}A}$ | $N_{ m type-B}$ | $\frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$ | $N_{ m type-A} + 2N_{ m type-B}$ |
|-----------------------------------------------------------------------------------------------------------------|-------------|-----------------------|-----------------|--------------------------------------------------------------|----------------------------------|
| Spin wave in ferromanget O(3)→O(2)                                                                              | 2           | 0                     |                 |                                                              | 2                                |
| NG modes<br>in Kaon<br>condensed CFL<br>SU(2)xSU(1)y→U(1)em                                                     | 3           |                       |                 |                                                              | 3                                |
| Kelvin waves in<br>vortex<br>translation <b>R</b> <sup>3</sup> → <b>R</b> <sup>1</sup>                          | 2           | 0                     |                 |                                                              | 2                                |
| nonrelativistic<br>massive C <i>P</i> <sup>1</sup> model<br>U(1)x <b>R</b> <sup>3</sup> → <b>R</b> <sup>2</sup> | 2           | 0                     |                 |                                                              | 2                                |

 $N_{\text{type-A}} + 2N_{\text{type-B}} = N_{\text{BS}}$   $N_{\text{BS}} - N_{\text{NG}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$ 

#### Topological soliton and central extension

## **Translations**

Ex) 2+1D skyrmion

Watanabe, Murayama 1401.8139



$$[P_x,P_y]\propto N$$
 x translation y translation topological number

## Translation and internal symm.

例) domain wall in nonrelativistic massive CP1 model

$$[P_z,Q] \propto N$$

Kobayashi, Nitta 1402.6826

z-translation U(1) charge

topological number

## SSB wit a small breaking term

$$H=H_0+hV$$
Symmetric small explicit breaking term

#### Pseudo NG modes

Type-A: 
$$\omega \sim \sqrt{h}$$

Ex) pions

Type-B:  $\omega \sim h$ 

Ex) magnon in an external magnetic field

No higher corrections if the explicit breaking term is a charge.

Nicolis, Piazza ('12), ('13) Watanabe, Brauner, Murayama ('13)

# Spontaneous breaking of spacetime symmetry

# Two type of conserved charges Translationally invariant

$$[P_{\mu},Q_{a}]=0$$
 translational operator charge

#### Ex: Translationally invariant charges-

Spacetime translation, chiral symmetry, flavor symmetry, ....

#### Ex: Non-translationally invariant charges-

Rotation, boost, conformal, residual gauge symmetry in the covariant gauge,...

## Example of spacetime breaking

## Crystal vibration

Translation(3), Rotation(3), Boost(3)

9 breaking,

but three NG modes appear.



## Example of spacetime breaking

## Crystal vibration

Translation(3), Rotation(3), Boost(3)

9 breaking,

but three NG modes appear.



Where are NG mode associated with rotations and boosts?

## Example of spacetime breaking

## Crystal vibration

Translation(3), Rotation(3), Boost(3)

9 breaking,

but three NG modes appear.



Where are NG mode associated with rotations and boosts?

Nowhere

Low - Manohar's argument

Low, and Manohar ('02)



Low - Manohar's argument

Low, and Manohar ('02)



Low - Manohar's argument

Low, and Manohar ('02)

**Ex.: String** 

order parameter:  $\langle \phi(x) \rangle$ 

 $\overline{\text{trans.:}\langle [P_x,\phi]\rangle = i\partial_x \langle \phi \rangle \neq 0}$ 

rot:  $\langle [L_z, \phi] \rangle = -iy\partial_x \langle \phi \rangle \neq 0$ 

Two broken symmetries, but one NG mode.

Because rotation can be expressed by translation

$$L = x imes P$$



Low - Manohar's argument

Low, and Manohar ('02)



order parameter:  $\langle \phi(x) \rangle$ 

trans:
$$\langle [P_x, \phi] \rangle = i\partial_x \langle \phi \rangle \neq 0$$

rot: 
$$\langle [L_z, \phi] \rangle = -iy\partial_x \langle \phi \rangle \neq 0$$

Two broken symmetries, but one NG mode.

Because rotation can be expressed by translation

$$L = x imes P$$



## Nontrivial example: Liquid crystal

#### Nematic phase

Rotation  $O(3) \rightarrow O(2)$ 

Two broken generators
Two elastic variables



## Nontrivial example: Liquid crystal

#### Nematic phase

Rotation  $O(3) \rightarrow O(2)$ 

Two broken generators
Two elastic variables

#### **Smectic-A Phase**

Rotation  $O(3) \rightarrow O(2)$ Translation

Three broken generators

One elastic variable



Ivanov, Ogievetsky ('75), Low, Manohar ('02) Nicolis et al ('13) Endlich, Nicolis, Penco ('13) Watanabe, Brauner ('14)

$$\xi = e^{ix^{\mu}P_{\mu}}e^{iT^{a}\pi^{a}(x)}$$
Volkov ('73), Ogievetsky ('74)

Ivanov, Ogievetsky ('75), Low, Manohar ('02) Nicolis et al ('13) Endlich, Nicolis, Penco ('13) Watanabe, Brauner ('14)

$$\xi = e^{ix^{\mu}P_{\mu}}e^{iT^{a}\pi^{a}(x)}$$
Volkov ('73), Ogievetsky ('74)

#### Maurer-Cartan 1 form

$$\alpha = -i\xi^{-1}d\xi = -ie^{-iT^a\pi^a}(d+iP_{\mu}dx^{\mu})e^{iT^a\pi^a}$$

$$= P_{\mu}dx^{\mu} + [T^a\pi, iP_{\mu}dx^{\mu} + d] + \cdots$$

$$= P_{\mu}dx^{\mu} + T^a(\partial_{\mu}\pi^a + f_{\mu}^{\ ba}\pi^b)dx^{\mu} + \cdots$$

Ivanov, Ogievetsky ('75), Low, Manohar ('02) Nicolis et al ('13) Endlich, Nicolis, Penco ('13) Watanabe, Brauner ('14)

$$\xi = e^{ix^{\mu}P_{\mu}}e^{iT^{a}\pi^{a}(x)}$$
Volkov ('73), Ogievetsky ('74)

#### Maurer-Cartan 1 form

$$\alpha = -i\xi^{-1}d\xi = -ie^{-iT^a\pi^a}(d + iP_{\mu}dx^{\mu})e^{iT^a\pi^a}$$

$$= P_{\mu}dx^{\mu} + [T^a\pi, iP_{\mu}dx^{\mu} + d] + \cdots$$

$$= P_{\mu}dx^{\mu} + T^a(\partial_{\mu}\pi^a + f_{\mu}^{\ ba}\pi^b)dx^{\mu} + \cdots$$

**Inverse Higgs mechanism** 

Ivanov, Ogievetsky ('75), Low, Manohar ('02) Nicolis et al ('13) Endlich, Nicolis, Penco ('13) Watanabe, Brauner ('14)

$$\xi = e^{ix^{\mu}P_{\mu}}e^{iT^{a}\pi^{a}(x)}$$
Volkov ('73), Ogievetsky ('74)

#### Maurer-Cartan 1 form

$$\alpha = -i\xi^{-1}d\xi = -ie^{-iT^a\pi^a}(d+iP_{\mu}dx^{\mu})e^{iT^a\pi^a}$$

$$= P_{\mu}dx^{\mu} + [T^a\pi, iP_{\mu}dx^{\mu} + d] + \cdots$$

$$= P_{\mu}dx^{\mu} + T^a(\partial_{\mu}\pi^a + f_{\mu}^{\ ba}\pi^b)dx^{\mu} + \cdots$$

# Independence of elastic variables

# of flat direction is not equal to # of broken symmetry

Hayata, YH ('14)



## 

Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85)

Covariant gauge 
$$\mathcal{L}_{\rm GF}=B\partial^{\mu}A_{\mu}+\frac{1}{2}\alpha B^{2}$$
 Gauge parameter 
$$\theta(x)=a+b_{\mu}x^{\mu}$$



charges  $Q, Q_{\mu}$   $Q_{\mu}$  is always broken:  $\langle [Q_{\mu}, A_{\nu}] \rangle = \delta_{\mu\nu}$ Under translation:  $[P_{\nu}, Q_{\mu}] = i\eta_{\nu\mu}Q$ 

## 

Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85)

Covariant gauge 
$$\mathcal{L}_{\rm GF} = B \partial^\mu A_\mu + \frac{1}{2} \alpha B^2$$
 Gauge parameter 
$$\theta(x) = a + b_\mu x^\mu$$



charges  $Q, Q_{\mu}$   $Q_{\mu}$  is always broken:  $\langle [Q_{\mu}, A_{\nu}] \rangle = \delta_{\mu\nu}$ 

Under translation:  $[P_{\nu}, Q_{\mu}] = i\eta_{\nu\mu}Q$ 

## Coulomb phase: Q is unbroken.

$$N_{\rm EV} = N_{\rm NG} = 4$$

NG boson: Photon (2, physical) scalar and longitudinal parts (unphysical)

## 

Ferrari, Picasso ('71), Hata ('82), Kugo, Terao, Uehara ('85)

Covariant gauge 
$$\mathcal{L}_{\mathrm{GF}}=B\partial^{\mu}A_{\mu}+\frac{1}{2}\alpha B^{2}$$
 Gauge parameter  $\theta(x)=a+b_{\mu}x^{\mu}$ 



charges  $Q, Q_{\mu}$   $Q_{\mu}$  is always broken:  $\langle [Q_{\mu}, A_{\nu}] \rangle = \delta_{\mu\nu}$ 

Under translation:  $[P_{\nu}, Q_{\mu}] = i\eta_{\nu\mu}Q$ 

## Coulomb phase: Q is unbroken.

$$N_{\rm EV} = N_{\rm NG} = 4$$

NG boson: Photon (2, physical) scalar and longitudinal parts (unphysical)

#### Higgs phase: Q is broken.

 $\langle [Q, \phi] \rangle = v$  NG higgs (unphysical)  $N_{\rm EV} = N_{\rm NG} = 1 \quad \langle [Q_{\mu}, \phi] \rangle = x_{\mu} v$ 



## Dispersion relation

#### Ex) Liquid crystal

Nematic phase: rotation O(3)→O(2)

$$N_{\rm BS} = N_{\rm EV} = 2$$
  $L_i(x) = \epsilon_{ijk} x^j T^{0k}(x)$   $i = 1, 2$ 

Dispersion relation:  $\omega = ak^2 + ibk^2$  Hosino, Nakano ('82)

Real and imaginary parts are the same order (damped oscillation) In case a=0, (overdamping)



## Ex) Capillary wave (ripplon)

$$\omega \sim k^{3/2}$$



Summary
For translationally invariant charges

SSB pattern + 
$$\langle [Q_a, Q_b] \rangle$$

- Independent elastic variable=N<sub>BS</sub>
- $N_{\rm BS} N_{\rm NG} = \frac{1}{2} \operatorname{rank} \langle [Q_a, Q_b] \rangle$
- $\bullet$   $N_{\text{type-I}} + 2N_{\text{type-II}} = N_{\text{BS}}$
- $N_{\text{type-II}} = \frac{1}{2} \text{rank} \langle [Q_a, Q_b] \rangle$

Type-A (Type-I): 
$$\omega = ak + ibk^2$$
   
 Type-B (Type-II):  $\omega = ak^2 + ibk^4$ 

## Summary: spacetime breaking

- independent elastic variables ≠ # of broken symmetries(Inverse Higgs mechanism)
- Dispersion relation is not universal (depending on temperature)
- Is there any rule?
- What is the low energy excitation in the quarkyonic matter?